4.9t^2=10t+45

Simple and best practice solution for 4.9t^2=10t+45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9t^2=10t+45 equation:



4.9t^2=10t+45
We move all terms to the left:
4.9t^2-(10t+45)=0
We get rid of parentheses
4.9t^2-10t-45=0
a = 4.9; b = -10; c = -45;
Δ = b2-4ac
Δ = -102-4·4.9·(-45)
Δ = 982
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{982}=\sqrt{1*982}=\sqrt{1}*\sqrt{982}=1\sqrt{982}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-1\sqrt{982}}{2*4.9}=\frac{10-1\sqrt{982}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+1\sqrt{982}}{2*4.9}=\frac{10+1\sqrt{982}}{9.8} $

See similar equations:

| 3|x|=20 | | -5x+100=86 | | 7x-10=12x+35 | | 4x-4+51+8x-11=180 | | 4c-13=-9 | | 75+25x=30+40x | | 12x+-13=-6x+17 | | -12+5u=33 | | -8x+4(1=5x)=-6x-14 | | -2x+7(-2x-3)=-32-5x | | 15x+36+3x+2=180 | | 3=3x-30 | | 3(a+4)+a=90 | | 2/5y-6=5 | | 4x-3(7-3x/2)=-2 | | 2+(10x-8)=4 | | 11x+16+36+3x+2=180 | | -11+2e=-5 | | ^2-4x+2=0 | | 6x-3(6-9x)=-7 | | x+(x-48)+(2x-164)=180 | | 6=x÷4-4 | | 5y=3/4+y | | 2x+52+90+x+38=180 | | 3x*3x+2x-7=0 | | -2x-(-17)=15 | | 13x-10+35+x+15=180 | | ^2=5x-6 | | 25/x=13/43 | | 4(x+3)=5(2x+6) | | (5x+-7x)/x=-120 | | (5x+-7x)/x=-200 |

Equations solver categories